Jump to content

PubMed RSS Feed - - In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea prope


Recommended Posts

In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties.

Eur J Pharm Biopharm. 2014 Apr 2;

Authors: Yu M, Ma H, Lei M, Li N, Tan F

Topical skin treatment was limited due to the lack of suitable delivery system with significant cutaneous localization and systemic safety. The aim of this study was to develop and optimize a nanoemulsion (NE) to enhance targeting localization of metronidazole (MTZ) in skin layers. In vitro studies were used to optimize NE formulations, a series of experiments were carried in vitro and in vivo to validate the therapeutic efficacy of MTZ-loaded optimal NE. NE type selection and D-optimal design study were applied to optimize NE formulation with maximum skin retention and minimum skin penetration. Three formulation variables: Oil X1 (Labrafil), Smix X2 (a mixture of Cremophor EL/Tetraethylene glycol, 2:1 w/w) and water X3 were included in D-design. The system was assessed for skin retention Y1, cumulative MTZ amount after 24 h Y2 and droplet size Y3. Following optimization, the values of formulation components (X1, X2 and X3) were 4.13%, 16.42% and 79.45%, respectively. The optimized NE was assessed for viscosity, droplet size, morphological study and in vitro permeation in pig skin. Distributions of MTZ were validated by confocal laser scanning microscopy (CLSM). Active agent of NE transferred into deeper skin and localized in epidermal/dermal layers after 24 h, which showed significant advantages of the optimal NE over Gel. The skin targeting localization and minimal systemic escape of optimal NE was further proved by in vivo study on rat skin. Current in vitro-in vivo correlation (IVIVC) enabled the prediction of pharmacokinetic profile of MTZ from in vitro permeation results. Further, the in vivo anti-rosacea efficacy of optimal formulation was investigated by pharmacodynamics study on mice ear.

PMID: 24704200 [PubMed - as supplied by publisher]

http://www.ncbi.nlm.nih.gov/pubmed/24704200?dopt=Abstract = URL to article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Unfortunately, your content contains terms that we do not allow. Please edit your content to remove the highlighted words below.
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Create New...

Important Information

Terms & Rules