rss Posted October 1, 2020 Report Share Posted October 1, 2020 Azelaic acid stimulates catalase activation and promotes hair growth through upregulation of Gli1 and Gli2 mRNA and Shh protein. Avicenna J Phytomed. 2020 Sep-Oct;10(5):460-471 Authors: Amirfakhryan E, Davarnia B, Jeddi F, Najafzadeh N Abstract Objective: Although azelaic acid is effective for treatment of acne and rosacea, the biological activity of azelaic acid and the effect of its combination therapy with minoxidil were not elucidated with regard to hair growth. Materials and Methods: In this study, mouse vibrissae follicles were dissected on day 10 after depilation. Then, the bulb and bulge cells of the hair follicle were treated with minoxidil and azelaic acid for 10 days to evaluate Sonic hedgehog (Shh) protein expression. Moreover, bulge and bulb cells of the hair follicles were cultivated and the expression of Gli1, Gli2, and Axin2 mRNA levels was evaluated using real-time polymerase chain reaction (PCR) analysis. We further investigated the protective effects of azelaic acid against ultraviolet B (UVB) irradiation in cultured bulb and bulge cells by determining catalase activity. An irradiation dose of 20 mJ/cm2 UVB for 4 sec was chosen. Results: The results showed that catalase activity significantly (p<0.05) increased in the bulge cells after exposure to 2.5 mM and 25 mM azelaic acid. Meanwhile, treatment of the bulb cells with azelaic acid (2.5 and 25 mM) did not cause significant changes in catalase activity. We also found that azelaic acid (25 mM) alone upregulated Gli1 and Gli2 expression in the bulge cells and 100 µ minoxidil caused Gli1 and Axin2 overexpression in the bulb region of the hair follicle. Moreover, minoxidil (100 µM) alone and in combination with azelaic acid (25 mM) led to Shh protein overexpression in the hair follicles in vitro and in organ culture. Conclusion: Our results indicated a potential role for azelaic acid in the protection of bulge cells from UVB damage and its combination with minoxidil may activate hair growth through overexpression of Shh protein.PMID: 32995324 [PubMed] {url} = URL to article Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now