Jump to content

PubMed RSS Feed - -Deep Learning for Diagnostic Binary Classification of Multiple-Lesion Skin Diseases.


rss

Recommended Posts

Icon for Frontiers Media SA Icon for PubMed Central

Deep Learning for Diagnostic Binary Classification of Multiple-Lesion Skin Diseases.

Front Med (Lausanne). 2020;7:574329

Authors: Thomsen K, Christensen AL, Iversen L, Lomholt HB, Winther O

Abstract
Background: Diagnosis of skin diseases is often challenging and computer-aided diagnostic tools are urgently needed to underpin decision making. Objective: To develop a convolutional neural network model to classify clinically relevant selected multiple-lesion skin diseases, this in accordance to the STARD guidelines. Methods: This was an image-based retrospective study using multi-task learning for binary classification. A VGG-16 model was trained on 16,543 non-standardized images. Image data was distributed in training set (80%), validation set (10%), and test set (10%). All images were collected from a clinical database of a Danish population attending one dermatological department. Included was patients categorized with ICD-10 codes related to acne, rosacea, psoriasis, eczema, and cutaneous t-cell lymphoma. Results: Acne was distinguished from rosacea with a sensitivity of 85.42% CI 72.24-93.93% and a specificity of 89.53% CI 83.97-93.68%, cutaneous t-cell lymphoma was distinguished from eczema with a sensitivity of 74.29% CI 67.82-80.05% and a specificity of 84.09% CI 80.83-86.99%, and psoriasis from eczema with a sensitivity of 81.79% CI 78.51-84.76% and a specificity of 73.57% CI 69.76-77.13%. All results were based on the test set. Conclusion: The performance rates reported were equal or superior to those reported for general practitioners with dermatological training, indicating that computer-aided diagnostic models based on convolutional neural network may potentially be employed for diagnosing multiple-lesion skin diseases.

PMID: 33072786 [PubMed]

{url} = URL to article

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

Terms of Use