rss Posted June 24, 2021 Report Share Posted June 24, 2021 J Inflamm Res. 2021 Jun 16;14:2569-2582. doi: 10.2147/JIR.S313636. eCollection 2021. ABSTRACT BACKGROUND: Sodium bituminosulfonate is derived from naturally occurring sulphur-rich oil shale and is used for the treatment of the inflammatory skin disease rosacea. Major molecular players in the development of rosacea include the release of enzymes that process antimicrobial peptides which, together with reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF), promote pro-inflammatory processes and angiogenesis. The aim of this study was to address the molecular mechanism(s) underlying the therapeutic benefit of the formulation sodium bituminosulfonate dry substance (SBDS), which is indicated for the treatment of skin inflammation, including rosacea. METHODS: We investigated whether SBDS regulates the expression of cytokines, the release of the antimicrobial peptide LL-37, calcium mobilization, proteases (matrix metalloproteinase, elastase, kallikrein (KLK)5), VEGF or ROS in primary human neutrophils. In addition, activity assays with 5-lipoxygenase (5-LO) and recombinant human MMP9 and KLK5 were performed. RESULTS: We observed that SBDS reduces the release of the antimicrobial peptide LL-37, calcium, elastase, ROS and VEGF from neutrophils. Moreover, KLK5, the enzyme that converts cathelicidin to LL-37, and 5-LO that produces leukotriene (LT)A4, the precursor of LTB4, were both inhibited by SBDS with an IC50 of 7.6 µg/mL and 33 µg/mL, respectively. CONCLUSION: Since LTB4 induces LL-37 which, in turn, promotes increased intracellular calcium levels and thereby, ROS/VEGF/elastase release, SBDS possibly regulates the LTB4/LL-37/calcium - ROS/VEGF/elastase axis by inhibiting 5-LO and KLK5. Additional direct effects on other pro-inflammatory pathways such as ROS generation cannot be ruled out. In summary, SBDS reduces the generation of inflammatory mediators from human neutrophils possibly accounting for its anti-inflammatory effects in rosacea. PMID:34163212 | PMC:PMC8215909 | DOI:10.2147/JIR.S313636 {url} = URL to article More Information Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now