Jump to content

PubMed RSS Feed - -Chlorogenic Acid Isomers Isolated from Artemisia lavandulaefolia Exhibit Anti-Rosacea Effects In Vitro


Recommended Posts

Biomedicines. 2022 Feb 16;10(2):463. doi: 10.3390/biomedicines10020463.


Rosacea is a chronic inflammatory disease affecting facial skin. It is associated with immune and vascular dysfunction mediated via increased expression and activity of cathelicidin and kallikrein 5 (KLK5), a serine protease of stratum corneum. Therefore, KLK5 inhibitors are considered as therapeutic agents for improving the underlying pathophysiology and clinical manifestation of rosacea. Here, we isolated the active constituents of Artemisia lavandulaefolia (A. lavandulaefolia) and investigated their inhibitory effect on KLK5 protease activity. Using bioassay-guided isolation, two bioactive compounds including chlorogenic acid isomers, 3,5-dicaffeoylquinic acid (isochlorogenic acid A) (1), and 4,5-dicaffeoylquinic acid (isochlorogenic acid C) (2) were isolated from A. lavandulaefolia. In this study, we evaluated the effects of isochlorogenic acids A and C on dysregulation of vascular and immune responses to rosacea, and elucidated their molecular mechanisms of action. The two chlorogenic acid isomers inhibit KLK5 protease activity, leading to reduced conversion of inactive cathelicidin into active LL-37. This inhibition of LL-37 production by isochlorogenic acids A and C reveals the efficacy of suppressing the expression of inflammatory mediators induced by LL-37 in immune cells such as macrophages and mast cells. In addition, both isomers of chlorogenic acid directly inhibited the proliferation and migration of vascular endothelial cells induced by LL-37.

PMID:35203672 | DOI:10.3390/biomedicines10020463

{url} = URL to article

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Create New...

Important Information

Terms of Use