Jump to content

PubMed RSS Feed - -The Association of Oleic Acid and Dexamethasone Acetate into Nanocapsules Enables a Reduction in the Effective Corticosteroid Dose in a UVB Radiation-Induced Sunburn Model in Mice


Recommended Posts

Pharmaceutics. 2024 Jan 26;16(2):176. doi: 10.3390/pharmaceutics16020176.


Dexamethasone has a high anti-inflammatory efficacy in treating skin inflammation. However, its use is related to the rebound effect, rosacea, purple, and increased blood glucose levels. Nanotechnology approaches have emerged as strategies for drug delivery due to their advantages in improving therapeutic effects. To reduce dexamethasone-related adverse effects and improve the anti-inflammatory efficacy of treatments, we developed nanocarriers containing this corticosteroid and oleic acid. Nanocapsules and nanoemulsion presented dexamethasone content close to the theoretical value and controlled dexamethasone release in an in vitro assay. Gellan gum-based hydrogels were successfully prepared to employ the nanostructured systems. A permeation study employing porcine skin showed that hydrogels containing non-nanoencapsulated dexamethasone (0.025%) plus oleic acid (3%) or oleic acid (3%) plus dexamethasone (0.025%)-loaded nanocapsules provided a higher amount of dexamethasone in the epidermis compared to non-nanoencapsulated dexamethasone (0.5%). Hydrogels containing oleic acid plus dexamethasone-loaded nanocapsules effectively inhibited mice ear edema (with inhibitions of 89.26 ± 3.77% and 85.11 ± 2.88%, respectively) and inflammatory cell infiltration (with inhibitions of 49.58 ± 4.29% and 27.60 ± 11.70%, respectively). Importantly, the dexamethasone dose employed in hydrogels containing the nanocapsules that effectively inhibited ear edema and cell infiltration was 20-fold lower (0.025%) than that of non-nanoencapsulated dexamethasone (0.5%). Additionally, no adverse effects were observed in preliminary toxicity tests. Our study suggests that nanostructured hydrogel containing a reduced effective dose of dexamethasone could be a promising therapeutic alternative to treat inflammatory disorders with reduced or absent adverse effects. Additionally, testing our formulation in a clinical study on patients with skin inflammatory diseases would be very important to validate our study.

PMID:38399236 | DOI:10.3390/pharmaceutics16020176

{url} = URL to article

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Create New...

Important Information

Terms of Use