Jump to content

PubMed RSS Feed - -The effect of methylcellulose on metronidazole release from polyacrylic Acid hydrogels.


Recommended Posts

Related Articles

The effect of methylcellulose on metronidazole release from polyacrylic Acid hydrogels.

Chem Pharm Bull (Tokyo). 2007 Aug;55(8):1141-7

Authors: Musial W

Topical treatment of acne rosacea, a chronic condition characterized by recurrent course for many years, is primarily based on metronidazole preparations. The aim of this study was to evaluate the effect of various acrylic acid polymers, in composition with methylcellulose on metronidazole release rate from hydrogels proposed for the treatment of acne rosacea. Viscosity and release studies using "Paddle over Disk" system with semipermeable membrane of MWCO 3500 were performed. Compositions of Carbopol 971P and methylcellulose revealed an increase in viscosity with increasing concentration of methylcellulose in the range of 17200-26166 mPa.s. In all the examined formulations, the release process was characterized by a two-stage course. Among bipolymeric formulations, the highest first-stage release rate of 9.18x10(-3) min(-1) was determined for the gel consisting of 2.00% Carbopol 980NF with 1.00% methylcellulose. The second-stage release rates ranged between 2.88x10(-3) and 8.00x10(-3) min(-1). Two-stage release course can thus be attributed to metronidazole distribution into two compartments of hydrogel matrix. Proposed gels, with similar rheological properties, may be used for ex vivo and in vivo studies to obtain a suitable drug activity of metronidazole in the treatment of acne rosacea.

PMID: 17666834 [PubMed - in process]

http://www.ncbi.nlm.nih.gov/entrez/query.f...p;dopt=Abstract = URL to article

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Create New...

Important Information

Terms of Use