Jump to content

PubMed RSS Feed - -Long non-coding RNA NEAT1 functions as a competing endogenous RNA to regulate S100A9 expression by sponging miR-196a-5p in rosacea


Recommended Posts

J Dermatol Sci. 2021 Feb 27:S0923-1811(21)00017-7. doi: 10.1016/j.jdermsci.2021.02.005. Online ahead of print.


BACKGROUND: Rosacea is a complex, chronic, and recurrent dermatologic condition that adversely affects quality of life and self-esteem. However, clinical relevance and molecular mechanisms underlying NEAT1 influence in rosacea remain unclear.

OBJECTIVE: The present study aims to investigate the dynamics and influences of lncRNAs, miRNAs, and mRNAs in rosacea patients, and to explore the impacts of NEAT1 treatments on miR-196a-5p and S100A9 expression in LL37-treated HaCaT cells.

METHODS: RNA-sequencing of skin tissues from rosacea patients and integrative analyses facilitated comprehensive exploration of lncRNA, mRNA, and miRNA networks. We identified differentially expressed lncRNAs in paired rosacea afflicted and non-lesioned tissues by hub lncRNAs in the ceRNA network. The role of NEAT1 in LL37-treated HaCaT cells was identified by in vitro experiments.

RESULTS: There were 237 lncRNAs, 38 miRNAs, and 1784 mRNAs in lesioned skin compared to non-lesioned skin in six rosacea patients. NEAT1 was upregulated in rosacea skin and in LL37-treated HaCaT cells. Moreover, inflammatory damage was able to be reduced in vitro after knockdown of NEAT1. Finally, NEAT1 was able to directly interact with miR-196a-5p, and downregulating miR-196a-5p was efficient in reversing the influence of NEAT1 siRNA on S100A9.

CONCLUSION: We have completed the first genome-wide lncRNA profiling of paired lesioned and non-lesioned samples from rosacea afflicted patients. The NEAT1/miR-196a-5p/S100A9 axis may have played an important role in the dynamics underlying inflammatory responses of rosacea. NEAT1 may have functioned as a competing endogenous RNA which regulated inflammatory responses in rosacea by sponging miR-196a-5p and upregulating S100A9 expression.

PMID:33678493 | DOI:10.1016/j.jdermsci.2021.02.005

{url} = URL to article

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Create New...

Important Information

Terms of Use